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Reference [I] used an abiabatic approximation to examine self-slmilar motion of a gas 
heated by an instantaneous point isotropic source of monochromatic radiation. Reference [2] 
solved the analogous problem with a homothermic model, corresponding to the case of a strongly 
heated gas with substantial radiative conduction effects. 

However, one must bear in mind that under strong heating the phase of gas motion precedes 
that of the thermal wave [3]. 

In this paper we consider the similarity laws for a thermal wave propagating through a 
region heated by an instantaneous pulse of monochromatic radiation. 

Let the internal energy per unit volume of the heated gas at t = 0 satisfy the relation 

E(r~ O) = A/r~. (1) 

The initial state of the gas satisfying Eq. (i) can be obtained with an instantaneous 
liberation of energy E, in the cold gas of density 0, in the form of monochromatic radiation 
with mean free path L [1-2]. In this case E(r, 0) = Eoe-r/L/4wr', and coincides with Eq. (i) 
in the limit r << L (A = Eo/4wL). 

We assume that for t > 0 a thermal wave propagates from the center of symmetry in the 
heated region, the wave resulting from the high temperatures near the center of symmetry. We 
note that the original state of the gas defined by Eq. (i) also allows propagation of a cool- 
ing wave converging towards the center, in addition to the thermal wave. In that case the 
problem is complex and loses its similarity. 

However, the velocity of the cooling wave is small in the time interval considered, and 
to a first approximation one can neglect radiation from the heated region. 

The equation describing the behavior of the thermal wave, in the radiative conduction 
approximation, can be written, in a spherical coordinate system, in the form [3] 

OE t . 0 /  o~nOEh 

We note that the internal energy per unit gas volume E = 0oaT k+t is used in Eq. ( 2 )  as 
the unknown function, instead of the temperature. This approximation gives a better descrip- 
tion of the properties of a heated gas at high temperature, allowing for the specific heat of 
the gas C V and the radiative mean free path l R to vary as a power of the temperature: 

C v  = aElOY = (1 + k ) ~ T  ~, ~R = B T m .  

Taking the above into account, the coefficients a and n in Eq. (2) have the values 
t 6 a B  m + 3  -- k 

a = 3 ( t +  k ) (po~) (4+~) l ( t+h) '  n - -  1 +~ 

The solution of Eq. (2)must satisfy the following conditions. 

At the center of symmetry, because there are no heat sources, the radiative flux is zero: 

2 0E 
l i r a  r ~-r = O. ( 3 )  
r ~  0 

We can neglect the influence of radiation at large distance. 

l i m  E ( t , r )  = Alr2." ( 4 )  
r ~  
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In addition, we apply the integral energy conservation law to the heated gas: 

lira I E (t, r) r2dr = At.  (5) 
7"-->oo 0 

The solution of Eq. (2) accounting for Eqs. (3)-(5) is the similarity problem. 

We introduce the similarity variables: 

x = r/(A~at) i!2(~+i), / = E(aA-lt)  ~/("+0. (6) 

We substitute Eq. (6) into Eqs. (2)-(5). We obtain an ordinary second-order differential 

equation 

_ ~ d ~  2 .d /~  d~ , 2f O. (7) 2 ( n q - l )  ~ l x /  ~ ] @ X ~ T  = 

Correspondingly, we transform the boundary conditions 

l i m x  2d~--O, l i m / ( x ) = U x  ~, l i m y / ( ~ ) ~ 2 d ~ = x .  (8) 

Integrating Eq. (7), we have 

2 x d  (p+  1) + 2/TM -~ x 2 / =  C (9) 

or, taking account of Eq. (8), 

i 1 I/(l+n) 
= ~ (~) ~ d ~ J  . /(x) C - ~ o  / 

Using condition (8), we find the value of the constant to be C = i. 

Thus, we obtain the first-order differential equation 

d/ I -- x~/-- 2] n+l 
d--~= 2 (n+ 1) xfn 

with the initial condition 

We integrated Eq. 
fying the condition 

I(0) = (U2)t/ci+-). 

(I0) numericaily, taking account of Eq. 

(lo) 

(li) 

(ii), up to values of x saris- 

I I ( x )  - i/x~l < ~. (12) 
The accuracy of the solution was monitored by inspecting the condition 

The solid line in Fig. 1 shows the dependence of the function f(x) for n = 3, and the 
broken line shows the relation ft = i/x a corresponding to the original state of the heated 
gas. It can be seen that condition (12) is satisfied for x ~ 2.41 for c ~ 0.01. The integra- 
tion step satisfying Eq. (13) for El = 0.005 was h = 0.001. 

The radius of the thermal wave front is given by 

rf = x f  (A ~ at)t/2(n+i) , (14) 

where we can take xf = 2.41 as the value of xf. 

It is interesting to compare the relations obtained with the thermal wave similarity 
solution for the case of a point liberation of energy Eo [3]: 

r f = x f  [a(Eo/PoCv)~ t11/(~+2). 
For n = 3, according to Eq. (14), we have 

rf .v  ti/s, dr f / d t  -.~ t-7/s, 
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while for the point liberation of energy we have rf ~ t ~/~ and drf/dt ~ t -~~ 

Thus, we have shown that the initial spatial distribution of released energy has an 
appreciable influence on the propagation of the thermal wave. 

In conclusion, we note that later stages in the process, when the velocity of the thermal 
wave front is comparable with that of sound in the heated gas, can be described by the methods 
examined in [i, 2]. 
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RADIATIVE-CONDUCTIVE HEAT TRANSFER IN A THIN SEMITRANSPARENT 

PLATE IN THE GUIDED-WAVEAPPEOXIMATION FOR A TEMPERATURE- AND 

FREQUENCY-DEPENDENT ABSORPTION COEFFICIENT 
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The radiatlve-conductlve heat-transfer problem has been studied previously [i] for a thin 
semitransparent cylinder whose refractive index is much greater than unity. This class of 
problems arises in the investigation of the temperature fields in semitransparent crystals 
such as sapphire or lithium hi.bate during pullin 8 from the melt by the Czochralski or 
Stepanov method. It is shown that the radiative energy transfer in the indicated cylinder 
can be described by the so-called gulded-wave approximation, where only those rays which 
undergo total internal reflection at the boundary of the cylinder are included in the radiant 
flux in its interior. A comparison of the analytical with experimental results and a study 
of heat transfer in a semitransparent cylinder coated with a thin absorbing film are reported 
in [2], Heat transfer in a thin infinitely wide semitransparent plate is discussed in the 
same paper. However, the constant absorption coefficient postulated in [1, 2] appears to be 
rather crude. For example, according to the data of [3], the absorption coefficient of sap~ 
phire in the temperature range 1200-2000~ varies quite considerably, from 0.004 to 0.5 cm- , 
in the interval of wavelengths up to 4 ~m, where the bulk of the radiated energy is concen- 
trated. It is important, therefore, to calculate the temperature field in a semitransparent 
plate whose absorption coefficient depends on the temperature and frequency. 
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